Refine your search:     
Report No.
 - 
Search Results: Records 1-8 displayed on this page of 8
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Update on the regional-scale 3D geological model in the Horonobe Underground Research Laboratory Project

Sakai, Toshihiro; Ishii, Eiichi

JAEA-Data/Code 2021-009, 13 Pages, 2021/08

JAEA-Data-Code-2021-009.pdf:1.9MB
JAEA-Data-Code-2021-009-appendix(CD-ROM).zip:42.79MB

Japan Atomic Energy Agency is performing the Horonobe Underground Research Laboratory Project, which includes a scientific study of the deep geological environment as a basis of research and development for the geological disposal of high level radioactive wastes, in order to establish comprehensive techniques for the investigation, analysis and assessment of the deep geological environment in the sedimentary rock. The numerical data of 3D geological model in regional-scale was compiled in 2019 as JAEA-Data/Code 2019-007, and then this report updates a part of the numerical data of 3D geological model around the underground facilities.

JAEA Reports

Mizunami Underground Research Laboratory Project; Compilation of digital data of geological model and hydrogeological model

Onoe, Hironori

JAEA-Data/Code 2020-016, 15 Pages, 2020/11

JAEA-Data-Code-2020-016.pdf:3.12MB
JAEA-Data-Code-2020-016-appendix(DVD-ROM).zip:262.52MB

Japan Atomic Energy Agency has been conducting Mizunami Underground Research Laboratory (MIU) Project, which is a broad scientific study of the deep geological environment as a basis of research and development for geological disposal of high-level radioactive waste, targeting in crystalline rock. This report summarized the digital data of local scale and site scale geological model and hydrogeological model constructed in the MIU project and the Regional hydraulic study.

JAEA Reports

The Regional-scale 3D geological model in the Horonobe Underground Research Laboratory Project

Sakai, Toshihiro; Matsuoka, Toshiyuki

JAEA-Data/Code 2019-007, 29 Pages, 2019/09

JAEA-Data-Code-2019-007.pdf:53.07MB
JAEA-Data-Code-2019-007-appendix(CD-ROM).zip:340.04MB

Japan Atomic Energy Agency is performing the Horonobe Underground Research Laboratory Project, which includes a scientific study of the deep geological environment as a basis of research and development for the geological disposal of high level radioactive wastes, in order to establish comprehensive techniques for the investigation, analysis and assessment of the deep geological environment in the sedimentary rock. This report summarize numerical data of 3D geological model in regional-scale constructed by Maptek$$^{rm TM}$$ Vulcan$$^{rm TM}$$.

JAEA Reports

Development of geological models in the Mizunami Underground Research Laboratory Project; Updating from "Shaft500 Geological Model" to "Stage500 Geological Model" in Phase II

Sakai, Toshihiro; Nohara, Tsuyoshi; Ishibashi, Masayuki

JAEA-Research 2016-009, 27 Pages, 2016/07

JAEA-Research-2016-009.pdf:4.05MB

In the Phase II, the geophysical and geological surveys, and the borehole investigation of the research galleries were carried out and the results obtained were used to validate and update the geological model. Through these surveys and analysis work, we confirmed the geological properties and the distribution of model components and evaluated the accuracy of these research methods. This report presents the geological model updated based on the information of the distributions of lithofacies and geological structures at a depth 500m research galleries, and besides, the validity of the geological model of the site scale developed in the Phase I is confirmed by comparing with the updated model.

Journal Articles

Geological mapping on the shafts and galleries walls on the Mizunami Underground Research Laboratory project

Tsuruta, Tadahiko; Sasao, Eiji

Oyo Chishitsu, 56(6), p.298 - 307, 2016/02

Japan Atomic Agency (JAEA) are performing Mizunami Underground Research Laboratory project (MIU project), which is a broad scientific study of the deep geological environment as a basis of research and development for geological disposal of nuclear wastes. Geological investigations, reflection seismic surveys, borehole drilling, etc., are carried out to understand the distribution and properties of important geological structures (permeable fractures, faults, etc). This report summarizes specifications and data characteristic of geological mapping on the shafts and gallery wall, and describes contributions to developments of geological model based on the results of geological mapping.

JAEA Reports

Study for development of the methodology for multi-scale hydrogeological modeling taking into account hydraulic heterogeneity caused by fracture network

Saegusa, Hiromitsu; Onoe, Hironori; Ishibashi, Masayuki; Tanaka, Tatsuya*; Abumi, Kensho*; Hashimoto, Shuji*; Bruines, P.*

JAEA-Research 2015-011, 59 Pages, 2015/10

JAEA-Research-2015-011.pdf:49.44MB

It is important to evaluate groundwater flow characteristics on several spatial scales for assessment of long-term safety on geological disposal of high-level radioactive wastes. An estimation of hydraulic heterogeneity caused by fracture network is significant for evaluation of the groundwater flow characteristics in the region of tens of meters square. Heterogeneity of equivalent hydraulic properties is needed to estimate for evaluation of the groundwater flow characteristics in the region of several km square. In order to develop the methodology for multi-scale hydrogeological modeling taking into account the hydraulic heterogeneity, spatial distribution of fractures and their hydraulic properties have been modeled using discrete fracture network (DFN) model. Then, hydrogeological continuum model taking into account the hydraulic heterogeneity has been estimated based on the DFN model. Through this study, the methodology for multi-scale hydrogeological modeling according to type of investigation data has been proposed.

JAEA Reports

Regional hydrogeological study project; Results from 1992-1999 period

Koide, Kaoru; Nakano, Katsushi; Takeuchi, Shinji; Hama, Katsuhiro; ; Ikeda, Koki;

JNC TN7400 2000-014, 83 Pages, 2000/11

JNC-TN7400-2000-014.pdf:4.84MB

The Japan Nuclear Cycle Development Institute (JNC) has been conducting a wide range of geoscientific research in order to build a firm scientific and technological basis for the research and development of geological disposal. One of the major components of the ongoing geoscientific research programme is the Regional Hydrogeological Study (RHS) project in the Tono region, central Japan. The main goal of the RHS project is to develop and demonstrate surface-based investigation methodologies to characterize geological environments at a regional scale in Japan. The RHS project was initiated in 1992. The first five years of the project were devoted mainly to develop methodologies and techniques for deep borehole investigations in crystalline rock in Japan. Investigations to verify the performance of new instruments and methods for borehole drilling, hydraulic testing and groundwater sampling were conducted. In the last four years, surface-based investigations and a stepwise development of models of the geological environment have been carried out. To date, remote sensing, geological mapping, airborne and ground geophysical investigations, and measurements in eleven deep boreholes have been carried out. Hydro monitorring is continuing in these boreholes. Important results that have been obtained from these investigations include multi-disciplinaly information about the heterogeneity of lithology and hydraulic, geochemical and rock mechanical properties of the granitic rock, and evolution of the groundwater geochemistry. Technical knowledge and experience have been accumulated, which allow application of the methodologies and techniques to characterize the geological environment in crystalline rock. The results from these R%D activities were used as prime inputs for the H12 report that JNC submitted to the Japanese Government in l999. Results from such R&D is also acknowledged by other geoscientific studies in general. JNC will synthesize the results from R&D ...

JAEA Reports

None

*; *; *

JNC TJ7420 99-020, 45 Pages, 2000/03

JNC-TJ7420-99-020.pdf:3.52MB

no abstracts in English

8 (Records 1-8 displayed on this page)
  • 1